Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 771
Filtrar
1.
J Hazard Mater ; 469: 134082, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522209

RESUMO

Antimony (Sb) pollution seriously endangers ecological environment and human health. Microbial induced mineralization can effectively convert metal ions into more stable and less soluble crystalline minerals by extracellular polymeric substance (EPS). In this study, an efficient Sb-resistant Rhodotorula mucilaginosa (R. mucilaginosa) was screened, which can resist 41 mM Sb(III) and directly transform Sb(III) into Sb2O3 microcrystals by EPS. The removal efficiency of R. mucilaginosa for 22 mM Sb(III) reached 70% by converting Sb(III) to Sb2O3. The components of supernatants as well as the effects of supernatants and pH on Sb(III) mineralization verified that inducible and non-inducible extracellular protein/polysaccharide biomacromolecules play important roles in the morphologies and sizes control of Sb2O3 formed by R. mucilaginosa respectively. Sb2O3 microcrystals with different morphologies and sizes can be prepared by the regulation of inducible and non-inducible extracellular biomacromolecules secreted by R. mucilaginosa. This is the first time to identify that R. mucilaginosa can remove Sb(III) by transforming Sb(III) into Sb2O3 microcrystals under the control of EPS. This study contributes to our understanding for Sb(III) biomineralization mechanisms and provides strategies for the remediation of Sb-contaminated environment.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Rhodotorula , Humanos , Metais/farmacologia , Antimônio/química , Rhodotorula/química
2.
Int J Biol Macromol ; 257(Pt 1): 128615, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070798

RESUMO

Nowadays, highly toxic antimony has severely posed threat to water sources and jeopardized human health. Fabricating adsorbents with the capability of easy separation, high efficiency and large adsorption capacity remains a major challenge. In this paper, zirconium functionalized chitosan melamine foam (ZCMF) was fabricated with zirconium and chitosan crosslinked onto melamine foam, then utilized for the removal of antimony(III/V) in water. The characterization of SEM and EDS collectively showed that ZCMF has a porous structure which could boost the mass transfer rate and zirconium ions on the surface could provide plentiful active adsorption sites. Systematic adsorption experiments demonstrated that the experimental data of Sb(III) and Sb(V) were consistent with the pseudo-second-order and Elovich kinetic models, respectively, and the Langmuir maximum adsorption capacities were separately 255.35 mg g-1 (Sb(III)) and 414.41 mg g-1 (Sb(V)), which displayed prominent performance among adsorbents derived from biomass. Combining the XPS and FTIR characterization with experimental data, it is rational to speculate that ZCMF could remove Sb from aqueous solution through ligand exchange, electrostatic attraction, and surface complexation mechanisms. ZCMF exhibited excellent performance, including large adsorption capacity, easy separation, facile preparation and eco-friendliness. It could be a promising new adsorbent for the treatment of antimony-containing wastewater.


Assuntos
Quitosana , Triazinas , Poluentes Químicos da Água , Humanos , Antimônio/química , Zircônio/química , Água , Adsorção , Poluentes Químicos da Água/química , Cinética
3.
J Hazard Mater ; 465: 133240, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134691

RESUMO

Antimony (Sb), a non-essential metalloid, can be released into the environment through various industrial activities. Sb(III) is considered more toxic than Sb(V), but Sb(III) can be immobilized through the precipitation of insoluble Sb2S3 or Sb2O3. In the subsurface, Sb redox chemistry is largely controlled by microorganisms; however, the exact mechanisms of Sb(V) reduction to Sb(III) are still unclear. In this study, a new strain of Sb(V)-reducing bacterium, designated as strain YZ-1, that can respire Sb(V) as a terminal electron acceptor was isolated from Sb-contaminated soils. 16S-rRNA gene sequencing of YZ-1 revealed high similarity to a known Fe(III)-reducer, Rhodoferax ferrireducens. XRD and XAFS analyses revealed that bioreduction of Sb(V) to Sb(III) proceed through a transition from amorphous valentinite to crystalline senarmontite (allotropes of Sb2O3). Genomic DNA sequencing found that YZ-1 possesses arsenic (As) metabolism genes, including As(V) reductase arsC. The qPCR analysis showed that arsC was highly expressed during Sb(V)-reduction by YZ-1, and thus is proposed as the potential Sb(V) reductase in YZ-1. This study provides new insight into the pathways and products of microbial Sb(V) reduction and demonstrates the potential of a newly isolated bacterium for Sb bioremediation.


Assuntos
Arsênio , Comamonadaceae , Compostos Férricos , Oxirredução , Oxirredutases/metabolismo , Biodegradação Ambiental , Antimônio/química , Arsênio/metabolismo , Minerais
4.
Environ Sci Technol ; 58(1): 695-703, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38141021

RESUMO

The fate of antimony (Sb) is strongly affected by adsorption, yet Sb isotope fractionation and the associated mechanism have not been widely reported. Here we experimentally investigated the process of Sb(V) adsorption on iron (oxyhydr)oxides and the associated isotope effects. Sb isotope fractionation occurs during adsorption (Δ123Sbsolution-mineral = 1.20 ± 0.02‰ for ferrihydrite and 2.35 ± 0.04‰ for goethite). Extended X-ray absorption fine structure (EXAFS) analysis shows that Sb(V) adsorption on iron (oxyhydr)oxides occurs via inner-sphere surface complexation, including mononuclear bidentate edge-sharing (2E) and binuclear bidentate corner-sharing (2C) complexes. A longer atom distance of Sb-Fe in ferrihydrite leads to less Sb isotope fractionation during Sb adsorption than in goethite. The Gibbs free energy and Mayer bond order were calculated based on density functional theory (DFT) and suggested that the strength of the bonding environment can be summarized as Sb(OH)6- > 2E > 2C. In turn, the bonding environment indicates the mechanism of Sb isotope fractionation during the process. This study reveals that Sb isotope fractionation occurs during Sb(V) adsorption onto iron (oxyhydr)oxides, providing a basis for the future study of Sb isotopes and further understanding of the fractionation mechanism.


Assuntos
Ferro , Óxidos , Ferro/química , Antimônio/química , Adsorção , Compostos Férricos/química , Isótopos
5.
Environ Res ; 245: 118011, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141916

RESUMO

Microbes have been confirmed to play key role in biogeochemistry of antimony. However, the impact of indigenous bacteria (from active mines) on the behavior of dissolved antimony remained poorly understood. In current study, the hyper antimony-resistant strain, Achromobacter sp. 25-M, isolated from the world largest antimony deposit, Xikuangshan antimony deposit, was evaluated for its role in dissolved Sb(V) and Sb(III) precipitation and removal. Despite of the high resistance to Sb(III) (up to 50 mM), the facultative alkaliphile, 25-M was not capable of Sb(III) oxidation. Meanwhile 25-M can produce high amount of exopolymeric substance (EPS) with the presence of Sb, which prompted us to investigate the potential role of EPS in the precipitation and removal of Sb. To this end, 2 mM of Sb(III) and Sb(V) were added into the experimental systems with and without 25-M to discern the interaction mechanism between microbe and antimony. After 96 hrs' incubation, 88% [1.73 mM (210 mg/L)] of dissolved Sb(V) and 80% [1.57 mM (190 mg/L)] of dissolved Sb(III) were removed. X-ray diffraction and energy dispersive spectroscopy analysis confirmed the formation of valentinite (Sb2O3) in Sb(III) amended system and a solitary Sb(V) mineral mopungite [NaSb(OH)6] in Sb(V) amended group with microbes. Conversely, no precipitate was detected in abiotic systems. Morphologically valentinite was bowtie and mopungite was pseudo-cubic as indicated by scanning electronic microscopy. EPS was subjected to fourier transform infrared (FT-IR) analysis. FT-IR analysis suggested that -OH and -COO groups were responsible for the complexation and ligand exchange with Sb(III) and Sb(V), respectively. Additionally, the C-H group and N-H group could be involved in π-π interaction and chelation with Sb species. All these interactions between Sb and functional groups in EPS may subsequently favore the formation of valentinite and mopungite. Collectively, current results suggested that EPS play fundamental role in bioprecipitation of Sb, which offered a new strategy in Sb bioremediation.


Assuntos
Antimônio , Minerais , Antimônio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Oxirredução , Difração de Raios X , Adsorção
6.
Environ Sci Technol ; 57(39): 14579-14588, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37737118

RESUMO

Microbial oxidation of environmental antimonite (Sb(III)) to antimonate (Sb(V)) is an antimony (Sb) detoxification mechanism. Ensifer adhaerens ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb(III) to Sb(V) under oxic conditions by an unknown mechanism. Genomic analysis of ST2 reveals a gene of unknown function in an arsenic resistance (ars) operon that we term arsO. The transcription level of arsO was significantly upregulated by the addition of Sb(III). ArsO is predicted to be a flavoprotein monooxygenase but shows low sequence similarity to other flavoprotein monooxygenases. Expression of arsO in the arsenic-hypersensitive Escherichia coli strain AW3110Δars conferred increased resistance to Sb(III) but not arsenite (As(III)) or methylarsenite (MAs(III)). Purified ArsO catalyzes Sb(III) oxidation to Sb(V) with NADPH or NADH as the electron donor but does not oxidize As(III) or MAs(III). The purified enzyme contains flavin adenine dinucleotide (FAD) at a ratio of 0.62 mol of FAD/mol protein, and enzymatic activity was increased by addition of FAD. Bioinformatic analyses show that arsO genes are widely distributed in metagenomes from different environments and are particularly abundant in environments affected by human activities. This study demonstrates that ArsO is an environmental Sb(III) oxidase that plays a significant role in the detoxification of Sb(III).


Assuntos
Antimônio , Arsênio , Humanos , Antimônio/química , Antimônio/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Oxirredutases/metabolismo , Oxirredução , Escherichia coli/metabolismo
7.
Environ Sci Pollut Res Int ; 30(43): 97102-97114, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37584806

RESUMO

In this study, Pseudomonas aeruginosa PA-1, a manganese-oxidizing bacterium screened from the soil at a manganese mining area, was found to be tolerated to Sb(III) stress during the Mn(II) oxidation, and the generated biological manganese oxide (BMO) outperformed the identical type of Abiotic-MnOX in terms of oxidation and adsorption of Sb(III). Adsorption kinetics and isotherm experiments indicated that Sb(III) was primarily adsorbed through chemisorption and multilayer adsorption on BMO; the maximum adsorption capacity of BMO was 143.15 mg·g-1. Removal kinetic studies showed that the Sb(III) removal efficiency by BMO was 72.38-95.71% after 15 min, and it could be up to 96.32-98.31% after 480 min. The removal procedure could be divided into two stages, fast (within 15 min) and slow (15 ~ 480 min), both of which exhibited first-order kinetic behavior. Dynamic fitting in two steps revealed that the removal speed correlated to the level of dissolved Sb(III) with low Sb(III) concentrations, but with the initial concentration being high, the removal speed rate was independent of dissolved Sb(III). During the whole process, the Sb(III) removal speed by BMO was also higher than that by the Abiotic-MnOX. Combining multiple spectroscopic techniques revealed that Sb(V) was generated through the Sb(III) oxidation by BMO and replacing surface metal hydroxyl groups to form the complex internal Mn-O(H)-Sb(V) or generating stable Mn(II)-antimonate precipitates on the surface. In addition, microbial metabolites, including tryptophan and humus, in BMO may be complex with Sb(III) and Sb(V) to achieve the treatment of Sb(III). This research investigates the factors and mechanisms influencing the adsorption and removal of Sb(III) by BMO, which could aid in its future engineering applications for the BMO.


Assuntos
Antimônio , Manganês , Antimônio/química , Manganês/química , Pseudomonas aeruginosa/metabolismo , Cinética , Óxidos/química , Compostos de Manganês/química , Oxirredução , Adsorção
8.
Environ Sci Pollut Res Int ; 30(41): 94401-94413, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531060

RESUMO

A novel hierarchically nanostructured magnetite (Fe3O4) was manufactured using microwave-assisted reflux method without surfactants. The nanostructured Fe3O4 is formed via the co-precipitation of Fe(III) and Fe(II), followed by a nanocrystal aggregation-based mechanism. Moreover, the effects of solution pH, contact time, initial Sb concentration, coexisting anions, and recycle numbers on the adsorption of nanostructured Fe3O4 toward Sb were extensively examined in the batch adsorption tests. The results demonstrated that the obtained Fe3O4 exhibited excellent adsorption ability toward Sb with the maximum adsorption capacities of 154.2 and 161.1 mg.g-1 for Sb(III) and Sb(V), respectively. The prepared Fe3O4 could be easily regenerated and reused for adsorption/desorption studies multiple times without compromising the Sb adsorption ability. Further exploration indicated that the oxidation or reduction reactions infrequently occurred during Sb adsorption processes. The proposed hierarchically nanostructured Fe3O4 thus could be potentially used for sustainable and efficient antimony removal.


Assuntos
Antimônio , Poluentes Químicos da Água , Antimônio/química , Compostos Férricos/química , Adsorção , Micro-Ondas , Oxirredução
9.
Inorg Chem ; 62(33): 13639-13648, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37561009

RESUMO

A tower-like SbIII-SeIV-templating polyoxotungstate [H2N(CH3)2]12Na7H3[Ce0.5/Na0.5(H2O)5]2[SbSe2W21O75]2·50H2O (1) was synthesized, whose skeleton is assembled from two prolonged lacunary Dawson [SbSe2W21O75]13- units and two [Ce0.5/Na0.5(H2O)5]2+ linkers. The uncommon [SbSe2W21O75]13- unit can be viewed as a combination of one [SeW6O21]2- group grafted onto a trivacant Dawson [SbSeW15O54]11- subunit. The conductive composite 1-Au@rGO containing 1, gold nanoparticles, and reduced graphene oxide (rGO) was conveniently prepared, using which the 1-Au@rGO-based electrochemical genosensor was constructed for detecting human multidrug resistance gene segment. This work enriches structural types of dual-heteroatom-inserted polyoxometalates and promotes the application of polyoxometalates in genosensors.


Assuntos
Resistência a Múltiplos Medicamentos , Técnicas Eletroquímicas , Humanos , Cério/química , Selênio/química , Antimônio/química , Cápsulas/química , Técnicas Eletroquímicas/métodos
10.
Environ Res ; 236(Pt 2): 116834, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544466

RESUMO

Antimony (Sb) is a toxic substance that poses a serious ecological threat when released into the environment. The species and redox state of Sb determine its environmental toxicity and fate. Understanding the redox transformations and biogeochemical cycling of Sb is crucial for analyzing and predicting its environmental behavior. Dissolved organic matter (DOM) in the environment greatly affects the fate of Sb. Microbially produced DOM is a vital component of environmental DOM; however, its specific role in Sb(III) oxidation has not been experimentally confirmed. In this work, the oxidation capacity of several Shewanella strains and their derived DOM to Sb(III) was confirmed. The oxidation rate of Sb(III) shows a positive correlation with DOM concentration, with higher rates observed under neutral and weak alkaline conditions, regardless of the presence of light. Incubation experiments indicated that extracellular enzymes and common reactive oxygen species were not involved in the oxidation of Sb(III). Characteristics of DOM suggests that microbial humic acid-like and fulvic acid-like substances are the potential contributors to Sb(III) oxidation. These findings not only experimentally validate the role of bacterial-derived DOM in Sb(III) oxidation but also reveal the significance of Shewanella and biogenic DOM in the biogeochemical cycling of Sb.


Assuntos
Shewanella , Oxirredução , Substâncias Húmicas/análise , Antimônio/química , Matéria Orgânica Dissolvida
11.
Environ Sci Process Impacts ; 25(8): 1365-1373, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37405368

RESUMO

The mechanism of immobilization of heavy metals in the soil using biochar has been studied extensively. However, the decomposition of biochar by biological and abiotic factors can reactivate the immobilized heavy metals in soil. Previous research showed that the addition of biological calcium carbonate (bio-CaCO3) can significantly increase the stability of biochar. However, the influence of bio-CaCO3 on the ability of biochar to immobilize heavy metals remains unclear. Therefore, this study evaluated the effect of bio-CaCO3 on the use of biochar to immobilize the cationic heavy metal lead and the anionic heavy metal antimony. The addition of bio-CaCO3 not only significantly improved the passivation ability of Pb and Sb but also reduced their migration in the soil. Mechanistic studies have shown that the reasons for the enhanced ability of biochar to immobilize heavy metals can be summarized in three aspects. First, the introduced inorganic component CaCO3 can precipitate and exchange ions with lead and antimony. Second, the N element in the organic component of bio-CaCO3 underwent polycondensation with the organic carbon in biochar to form pyridine N and pyrrole N structures, which can form a strong complex with lead and antimony. Pyridine N complexes more strongly than pyrrole N. Third, bio-CaCO3 increased the degree of aromatization and the surface π-electron density of biochar, which enhanced the ability of biochar to adsorb heavy metals. This study will provide a new concept for the application of biochar as an amendment to remediate heavy metals in the soil.


Assuntos
Metais Pesados , Poluentes do Solo , Antimônio/química , Chumbo , Carbonato de Cálcio , Solo/química , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal/química
12.
Molecules ; 28(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446634

RESUMO

We synthesized a series of new antimony(III) compounds by reaction of Sb(OEt)3 with organic ligands of the type E(CH2-CH2-OH)2, with E = NH, NMe, O, S, Se, and Te. The synthesized compounds have the general composition [E(CH2-CH2-O)2]Sb(OEt). For comparison, the compound (O-CH2-CH2-S)Sb(OEt) was prepared. All compounds are characterized using NMR, IR, and Raman spectroscopy. The molecular structures of the products reveal the formation of chelate complexes, wherein the ligand molecules coordinate as tridentate O,E,O-ligands to the antimony atom. Dimer formation in the solid state allows the antimony atoms to reach pentacoordination. Quantum chemical calculations including topological analysis of electron density reveal that there are polar shared bonds between antimony and the oxygen atoms bound to antimony. The interactions between the donor atom E and the Sb atom and the interactions in the dimers can be characterized as Van der Waals interactions. The reactivity of [MeN(CH2-CH2-O)2]Sb(OEt) was investigated as an example. For this purpose, the compound reacted with a range of organic compounds such as carboxylic acids and carboxylic anhydrides and small molecules like CO2 and NH3. This study establishes a new and easy accessible class of antimony(III) compounds, provides new insights into the chemistry of antimony compounds and opens up new opportunities for further research in this field.


Assuntos
Antimônio , Humanos , Modelos Moleculares , Antimônio/química , Ligantes , Cristalografia por Raios X
13.
Environ Sci Technol ; 57(25): 9353-9361, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37295412

RESUMO

A lack of knowledge about antimony (Sb) isotope fractionation mechanisms in key geochemical processes has limited its environmental applications as a tracer. Naturally widespread iron (Fe) (oxyhydr)oxides play a key role in Sb migration due to strong adsorption, but the behavior and mechanisms of Sb isotopic fractionation on Fe (oxyhydr)oxides are still unclear. Here, we investigate the adsorption mechanisms of Sb on ferrihydrite (Fh), goethite (Goe), and hematite (Hem) using extended X-ray absorption fine structure (EXAFS) and show that inner-sphere complexation of Sb species with Fe (oxyhydr)oxides occurs independent of pH and surface coverage. Lighter Sb isotopes are preferentially enriched on Fe (oxyhydr)oxides due to isotopic equilibrium fractionation, with neither surface coverage nor pH influencing the degree of fractionation (Δ123Sbaqueous-adsorbed). Limited Fe atoms are present in the second shell of Hem and Goe, resulting in weaker surface complexes and leading to greater Sb isotopic fractionation than with Fh (Δ123Sbaqueous-adsorbed of 0.49 ± 0.004, 1.12 ± 0.006, and 1.14 ± 0.05‰ for Fh, Hem, and Goe, respectively). These results improve the understanding of the mechanism of Sb adsorption by Fe (oxyhydr)oxides and further clarify the Sb isotope fractionation mechanism, providing an essential basis for future application of Sb isotopes in source and process tracing.


Assuntos
Antimônio , Óxidos , Óxidos/química , Adsorção , Antimônio/química , Raios X , Compostos Férricos , Isótopos , Água
14.
Dalton Trans ; 52(27): 9229-9237, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37357833

RESUMO

The structures of the pentavalent antimonials, small-molecule Sb-containing drugs used to treat the neglected tropical disease leishmaniasis, remain unknown despite their widespread use for over half a century. These drugs are prepared by combination of an Sb(V) precursor and a sugar derivative and proposed structures frequently invoke a cyclic stiborane motif in which a vicinal diolate ligand chelates an Sb(V) center. As a step towards better understanding the structures of the pentavalent antimonial drugs, a series of cyclic organostiboranes spanning the stereochemical space afforded by a vicinal diolate motif has been synthesized and characterized. X-ray crystallography and NMR spectroscopy provide unambiguous characterization of the structures of these model compounds and of the interaction of the diolate with the Sb(V) center. Particularly notable are the systematic trends observed in the NMR spectroscopic signals as a function of the stereochemistry of the diolate. The spectroscopic signatures identified with these model compounds will provide a framework for elucidating the structures of the pentavalent antimonial drugs.


Assuntos
Antiprotozoários , Antiprotozoários/farmacologia , Antiprotozoários/química , Antimônio/química
15.
Chemosphere ; 335: 139047, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37263511

RESUMO

Currently, there is a lack of advanced nanotechnology designed to efficiently remove antimony (Sb) from contaminated water systems. Sb most commonly appears as antimonite (Sb(III)) or as the anion antimonate (Sb(V)). Sb(III) is approximately ten times more toxic than Sb(V), and Sb(III) is also harder to eliminate because of its motility and charge neutrality. The work presented here developed an electrochemical filtration technology for the direct elimination of Sb(III) from contaminated water. The primary components of the filtration system were an electroactive carbon nanotube (CNT) membrane that were functionalized with the Sb-specific UiO-66(Zr), an metal-organic framework. In an electric field, the UiO-66(Zr)/CNT nanohybrid filter enabled in situ transformation of Sb(III) to less harmful Sb(V). The Sb(V) was then effectively adsorbed by the UiO-66(Zr). The removal efficiency (90.5%) and rate constant (k1 = 0.0272 min-1) toward Sb(III) removal was 1.3 and 1.4 times greater than that of CNT filter. The abundance of available adsorption sites of the nanohybrid filter, flow-through construction, and electrochemical activity combined to rapidly remove Sb(III) from water. The underlying functioning of the nanohybrid filter was determined with a series of process experiments and structural characterizations. The filter was effective over a broad range of pH values and in a variety of complex aqueous environments. Once loaded with Sb, the UiO-66(Zr)/CNT filter could be washed with a dilute NaOH solution to efficiently refresh its activity. The results of this work offer a direct, efficient strategy that integrates nanotechnology, electrochemistry, and membrane separation to remove antimony and potentially other heavy metals from contaminated water.


Assuntos
Estruturas Metalorgânicas , Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Antimônio/química , Nanotubos de Carbono/química , Descontaminação , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Água , Adsorção
16.
ISME J ; 17(8): 1278-1289, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37270585

RESUMO

Microorganisms play crucial roles in phosphorus (P) turnover and P bioavailability increases in heavy metal-contaminated soils. However, microbially driven P-cycling processes and mechanisms of their resistance to heavy metal contaminants remain poorly understood. Here, we examined the possible survival strategies of P-cycling microorganisms in horizontal and vertical soil samples from the world's largest antimony (Sb) mining site, which is located in Xikuangshan, China. We found that total soil Sb and pH were the primary factors affecting bacterial community diversity, structure and P-cycling traits. Bacteria with the gcd gene, encoding an enzyme responsible for gluconic acid production, largely correlated with inorganic phosphate (Pi) solubilization and significantly enhanced soil P bioavailability. Among the 106 nearly complete bacterial metagenome-assembled genomes (MAGs) recovered, 60.4% carried the gcd gene. Pi transportation systems encoded by pit or pstSCAB were widely present in gcd-harboring bacteria, and 43.8% of the gcd-harboring bacteria also carried the acr3 gene encoding an Sb efflux pump. Phylogenetic and potential horizontal gene transfer (HGT) analyses of acr3 indicated that Sb efflux could be a dominant resistance mechanism, and two gcd-harboring MAGs appeared to acquire acr3 through HGT. The results indicated that Sb efflux could enhance P cycling and heavy metal resistance in Pi-solubilizing bacteria in mining soils. This study provides novel strategies for managing and remediating heavy metal-contaminated ecosystems.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Antimônio/análise , Antimônio/química , Solo/química , Fosfatos/análise , Fósforo/análise , Filogenia , Monitoramento Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Bactérias/genética , China , Microbiologia do Solo
17.
Environ Sci Technol ; 57(12): 4813-4820, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36929871

RESUMO

Jarosite, a common mineral in acidic sulfur-rich environments, can strongly sorb both As(V) and Sb(V). However, little is known regarding the mechanisms that control simultaneous co-sorption of As(V) and Sb(V) to jarosite. We investigated the mechanisms controlling As(V) and Sb(V) sorption to jarosite at pH 3 (in dual and single metalloid treatments). Jarosite was found to sorb Sb(V) to a greater extent than As(V) in both single and dual metalloid treatments. Relative to single metalloid treatments, the dual presence of both As(V) and Sb(V) decreased the sorption of both metalloids by almost 50%. Antimony K-edge EXAFS spectroscopy revealed that surface precipitation of an Sb(V) oxide species was the predominant sorption mechanism for Sb(V). In contrast, As K-edge EXAFS spectroscopy showed that As(V) sorption occurred via bidentate corner-sharing complexes on the jarosite surface when Sb(V) was absent or present at low loadings or by formation of similar complexes on the Sb(V) oxide surface precipitate when Sb(V) was present at high loadings. These results point to a novel mechanism by which Sb(V) impacts the co-sorption of As(V). Overall, these findings highlight a strong contrast in the sorption mechanisms of Sb(V) versus As(V) to jarosite under acidic environmental conditions.


Assuntos
Arsênio , Arsênio/química , Antimônio/química , Raios X , Adsorção , Óxidos , Espectroscopia por Absorção de Raios X
18.
Chemistry ; 29(35): e202300637, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36994844

RESUMO

Methyl and methylene compounds of arsenic and antimony have been studied by photoelectron photoion coincidence spectroscopy to investigate their relative stability. While for As both HAs=CH2 , As-CH3 and the methylene compound As=CH2 are identified in the spectrum, the only Sb compound observed is Sb-CH3 . Thus, there is a step in the main group 15 between As and Sb, regarding the relative stability of the methyl compounds. Ionisation energies, vibrational frequencies and spin-orbit splittings were determined for the methyl compound from photoion mass-selected photoelectron spectra. Although the spectroscopic results for organoantimony resemble those for the previously investigated bismuth compounds, EPR spectroscopic experiments indicate a far lower tendency for methyl transfer for Sb(CH3 )3 compared to Bi(CH3 )3 . This study concludes investigations on low-valent organopnictogen compounds.


Assuntos
Antimônio , Arsênio , Espectroscopia Fotoeletrônica , Espectrometria de Massas , Antimônio/química
19.
Arch Microbiol ; 205(4): 139, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964410

RESUMO

Heavy metal pollution is a global problem that affects both the environment and human health. Microorganisms play an important role in remediation. Most studies on the use of microorganisms for heavy metal remediation focus on single heavy metals. In this study, a strain of Penicillium amphipolaria, XK11 with high resistance to both antimony (Sb III) and cadmium (Cd II) was screened from the mineral slag. The strain also had a high phosphate solubilization capacity. The single-factor adsorption experiment results showed that the initial pH (pH0), adsorption time (T), and initial solution concentration (C0) all affected the adsorption of Sb and Cd by XK11. When the initial pH0 (Cd = 6, Sb = 4) and adsorption time (T = 7 d) were constant, XK11 achieved the maximum removal rate of Cd (45.6%) and Sb (34.6%). These results confirm that XK11 has potential as a biomaterial or remediation of Sb and Cd pollution.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Cádmio , Antimônio/química , Adsorção , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-36901331

RESUMO

Although the removal ability of potassium ferrate (K2FeO4) on aqueous heavy metals has been confirmed by many researchers, little information focuses on the difference between the individual and simultaneous treatment of elements from the same family of the periodic table. In this project, two heavy metals, arsenic (As) and antimony (Sb) were chosen as the target pollutants to investigate the removal ability of K2FeO4 and the influence of humic acid (HA) in simulated water and spiked lake water samples. The results showed that the removal efficiencies of both pollutants gradually increased along the Fe/As or Sb mass ratios. The maximum removal rate of As(III) reached 99.5% at a pH of 5.6 and a Fe/As mass ratio of 4.6 when the initial As(III) concentration was 0.5 mg/L; while the maximum was 99.61% for Sb(III) at a pH of 4.5 and Fe/Sb of 22.6 when the initial Sb(III) concentration was 0.5 mg/L. It was found that HA inhibited the removal of individual As or Sb slightly and the removal efficiency of Sb was significantly higher than that of As with or without the addition of K2FeO4. For the co-existence system of As and Sb, the removal of As was improved sharply after the addition of K2FeO4, higher than Sb; while the latter was slightly better than that of As without K2FeO4, probably due to the stronger complexing ability of HA and Sb. X-ray energy dispersive spectroscopy (EDS), X-ray diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the precipitated products to reveal the potential removal mechanisms based on the experimental results.


Assuntos
Arsênio , Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Antimônio/química , Substâncias Húmicas , Compostos Férricos/química , Água , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...